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MISS-E: A Method of Modeling and
Simulation of Dynamic Systems

HALINA KWASNICKA and WITOLD KWASNICKI

ABSTRACT

The MISS-E computer program is a méthod for the modeling of continuous dynamic systems. This paper
provides a general description of the program with special attention given to the inclusion of events into the
model. Events may interact with continuous variables and also may influence the structure of the model. The
model is constructed by interacting with the program.

Introduction

This paper presents an approach to modeling continuous, dynamic systems. The
method was developed especially for modeling socio-cconomic systems, hence the name
MISS-E from the Polish abbreviation for Interactive Modeling of Socio-Economic Sys-
tems. The simulation experiments reveal, however, that this method may also be suc-
cessfully applied to the modeling of engineering systems and to solving ordinary differ-
ential, difference, and mixed difference-differential cquations.

The authors had two general purposes for developing MISS-E:

1. The inclusion of events into the mathematical description of the process being
modeled;

2. An incorporation of the main virtues of J. Forrester’s Systems Dynamics [2], as
well as those of the methods of structural modeling [7, 8], such as QSIM [10],
and KSIM [4]. :

The approach used in MISS-E to incorporate the modeling of events into models of
continuous systems differs from those proposed by Gordon and Stover {3], Lipinski and
Tydeman [9], and Enzer [1]. In MISS-E, the occurrence of an event can influence:

{. The values of continuous variables,
2. The probabilities of occurrence of other events, and
3. The structure of the model.

The influence of values of continuous variables on probabilitics of events can be
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considered. The imposition of logical conditions on the occurrecnce of events is also
possible. For example, cvent A may occur only after the occurrence of events B and C.
Variables which describe the behavior of the modeled process are divided in MISS-E
into two classcs, as they are in DYNAMO and QSIM. These two classes are:

I, State variables (i.c., accumulating variables). These variables are “levels” in the
DYNAMO notation [2] (c.g., nonrencwable resources and industrial capital).
They arc in complete accord with the concept of the statc variable as defined in
systems theory.

2. Auxiliary variables (i.e., variables which are functions of the state variables).

Either state or auxiliary variables may belong to one of four categories:

1. “Quantitative” variables (i.c., variables without any constraints on their vari-
ability).

2. “Qualitarive” variables (i.c., variables whose values belong to a finite set of real
numbers). This category makes it possible to use subjective or intuitive variables.
These would include, for example, the quality of life in Poland or the convenicnce
of public transport in Wroclaw. Values of such variables may not be measured
by an objective method. The only way to “mcasure” these variables is via sub-
Jective mcthods such as public inquiry. The range of variability is assumed, for
instance, from O to 100, and the initial or Delphi value of the variable can be
obtained by averaging the answers from a survey.

3. Recurring events (i.e., events which may occur more than once during the sim-
ulated period, such as an ccological catastrophe or a workers’ strike).

4. Nonrecurring events (i.e., events which may occur only once during the simulated
period, such as EEC and COMECON’s establishment of a single free trade bloc).

The functional form of an auxiliary variable may consist of:

. Function of the state or other auxiliary variables;

. A time-dependent function, such as an input variable;

. A time-dclayed function of the state or the auxiliafy variable;
. The derivative of the state or auxiliary variable.

AW N -

In DYNAMO, the flow diagrams are uscd to portray the structure of the model
constructed. This is very cffective in large models. Small and medium-size models, on
the other hand, use interactive matrices to show the structure of the model (as in QSIM
and KSIM). Both methods of representation are available in MISS-E.

The most expensive and time consuming stages of the model building are:

1. Translation of the mathematical model into a computer model, which involves
writing the algorithm in a computer language and obtaining a correct program
compilation; )

2. Simulation of the computer model (i.e., testing the assessment of sensitivity and
utility, and experimenting with possible altcrnative policies).

To make these two stages most effective, the ALGOL 1900 program called MISS-E
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operates in a conversational mode. Nearly all information about the model is given to this
program in the form of paramecters. Only functional forms of auxiliary variables have to be
written in ALGOL or FORTRAN languages by the modeler. This allows for flexibility in
the programming possibilities of the algorithmic languages.

Other features of MISS-E include:

1. A very general equation form similar to that used in DYNAMO; for example, a
set of ordinary first-order differential cquations may be used while DYNAMO’s
“inrate” and “outrate” variables are eliminated.

2. MISS-E prints meaningful time scales on its output, as do DYNAMO and QSIM.

3. As with QSIM and KSIM, the modeling process may be operated by people with
little knowledge of computers.

4. Changes of simulated conditions, such as the structure of the model or the
interactions among variables, are possible at any stage of the cxperiment. It is
also possible to force the occurrence of events at any point in the simulation.

The Modeling Process

This section identifies the problem, specifies the model’s purpose in terms of the
dynamic system behavior to be explained, and establishes the temporal and spatial bound-
aries. For a fuller discussion of the modeling process, see Kwasnicka and Kwasnicki [5].
The following discussion uses as an example a simplified model of plant production. A
fuller model of the agricultural sector is presented in Kwasnicka and Kwasnicki [6].

VARIABLES AND THE STRUCTURE OF THE MODEL

All variables in MISS-E may belong to one of the four categories defined in the
introduction: quantitative variables, qualitative variables (scope = 0,100), rccurring events,
and nonrecurring events.

At any time 1, quantitative and qualitative variables may be characterized by their
values at time ¢f; and events may be characterized by their probabilitics of occurrence
during the period (1, ¢ + 1), i.c., during the next chosen unit of time. The reciprocal of
the probability is approximately equal to the average time until the event will occur.

As a first step toward working out the structure of the computer model, the causal
relationships (which form the basis for building the flow diagram) and the feedback loops
must be described. An example of this can be seen in the causal structure for the agri-
cultural sector as shown in Figure I.

Before the flow diagram can be built, the designer must select specific variables to
take the role of state variables, and others to play the part of auxiliary variables. While
there are no absolute rules regarding how this determination should be made, it should
be remembered that state variables represent the cumulative variables and auxiliary vari-
ables are functions of the state variables. An auxiliary variable may be:

Any function of a state variable,

A time-dependent function,

A time-delayed state or auxiliary variable,

A derivative of the state or the auxiliary variable, or
Any function combining the above four types.

VAW

The flow diagram has eight main components, which are very similar to those used
in DYNAMO:



378 H. KWASNICKA AND W. KWASNICKI

| Level/state  variable—represents  quantitative  and
qualitative variables. :

Level for event—i.c., the probability of the event’s
occurrence as a state variable.

:* Rate of change of the state variable.

Auxiliary variable.

Event as an auxiliary variable.

NG Dclaying of variables IN; in the arca OUT is written
the variable in which the value of the time-delayed
variable IN is stored. Arcas DE, I, and F are respec-
tively for the delay number and numbers of the initial
and final parameters.

Functional relationship between two variables.

ouT
IN f
e
. Functional relationship of the parameter P and an aux-
$ iliary variable.

Short descriptions for variables, codes, and statements describing the mathematical form
of the variables are written in these graphical symbols for both state and auxiliary variables.
A flow diagram for the model used in our example is shown in Figure 2. In regard to
the flow diagram, the following need particular note:

1. State variables arc designated in succession by Y1, Y2, efc.

2. Auxiliary variables whosc values may be printed as output results during simu-
lation are designated by Al, A2, A3, etc.

3. Auxiliary variables which influence rates of state variables must be designated
by A due to the way in which the MISS-E computer program is organized.

The functional form of the auxiliary variables (and only the functional form) must
be written in computer language. Following are some of the essential principles for the
writing of these functional forms: '

1. All names are written in capital letters and time is designated by T.

2. Arithmetic functions are written as follows: addition, + ; subtraction, —; mul-
tiplication, *; division, /; and standard functions, ABS, LN, SIGN, SIN, COS,
EXP, ENTER.

3. Equivalence between a variable’s symbol and its mathematical form is designated
by a colon and an cqual sign—e.g., P{20} : = EXP( — 5*T);. The end of the
mathematical form is signified by a semi-colon.
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Fig. 1. Causal structure of agricultural sector.

4. Piecewise linear functions are available in MISS-E and are denoted by FUN.
This function (for example, see Figure 3) is fully determined by the coordinates
of its bend points and is indicated by our function points A, B, C, D, E. The
coordinates of MISS-E arc given as “auxiliary paramecters” and are designated
in succession by P{1}, P{2}, P{3}, ctc. The function in Figure 3a may be written
in MISS-E as:

A{2}: = FUN(Y{13}, 9, 18);

The first parameter of FUN is the argument of the piecewise lincar function,
which may be an expression of any variable. The second and third parameters
describe the initial and final numbers of auxiliary parameters which describe the
function. In the present case, the parameters from 9 to 18 must equal:

P{9} = 0, P{10} = 1, P{11} = 1. P{I12} = 2, P{13} = 3, P{l4} =
P{IS} =5, P{I6} = 4, P{17} = 6, and P{18} =

The first two parameters describe the coordinates of point A, the third and fourth
describe the coordinates of point B, etc. Thus, the step function shown in Figure
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Fig. 2. Flow diagram of plant production model.

3b may be described as
B{1}: = FUN (T, 1, 8).
The auxiliary parameters are

P{1} = 0, P{2} = 0, P{3} = 5, P{4} = 0, P{5} = 5,
P{6} = 1, P{7} = 10, and P{8} = I.

5. The time delayed function is described as LAG. If, for example, auxiliary variable
A5 at time T is cqual to the valuc of variable Y10 at time 7" — 4, 5 (dclay 1s

5 4 A2 1 4 B1 [ C—
D =
B8

/ ’

. 4
. Y13 o T

T ] 1 ¥ i 1 1 1
o ' '5 0 10
(a) (b)

Fig. 3. Piccewise linear functions.
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equal to 4, 5 units), then it may be expressed as A{5}: = LAG (§V, 10, 2, 21,

28) where:

a. The first parameter informs about the type of delayed variable and is equal
to SV (where the delayed variable is a state variable) or AV (where the
delayed variable is an auxiliary variable)

b. The second parameter is equal to the number of the delayed variable

c. The third parameter is cqual to the number of the delay. The sequence of
delays is given as input data (e.g., 3, 4.5, 2, 5, 1), the number of the
appropriate elements in the sequence is also given. To begin the simulation
run with a model that contains delayed variables, it is necessary to use the
values of the delayed variables before the initial moment. These values are
presented as piecewise linear functions. The fourth and fifth parameters are
equal to the initial and final auxiliary parameters P.

. Derivatives .of state and auxiliary variables are described by a D function. For

example, the derivative of the auxiliary variable A {5} may be written as A{d}: =
D (AV,5).-Here, the first paramcter tells us about the type of variable whose
derivative must be reckoned and is equal to SV for the state variable and AV for
the auxiliary variable. The second parameter is equal to the number of the variable.

. Generation of random numbers with uniform distribution of (0,1) is designated

by GEN. The random value is stored in X, and successive random values are
generated by GEN(X);. The GEN procedure allows generation of random values
with other distributions.

. All other procedures initiated by the modeler may be incorperated during the

time the functional form of the auxiliary variables is defined.

Table | presents the equations for the auxiliary variables. Statements 49 and 50

define the local variables, the values of which are never printed in the simulation output.
Some of these variables, HE, for example, provide an effective means of reckoning the
values of certain other variables (see statements 65-72). The instructions FOR and IF are
used in the description of some of the variables enabling the modeler to use short, and
yet effective, notations. '

TABLE 1
Equations for Auxiliary Variables in the Plant Production Model

49
50
50

51
51
51
53
54
55
56
56
58
58
59
61
6l
62

"REAL’ NPK,PEST,CAO,CAO1.CAO2,CAOAL,POP,STRAW,DIR,
HE,NPKPL ,MAFOD,MASTRAW ,MAPR,MAUS,MAPOT,;

'ARRAY’ SH.PESTF[1:5],NPKF[1:6];

"COMMENT" GRASS-LAND,PLOUGHLAND AND SOWING AREAS COMPUTATION;
A[1]: =FUN(T,18,25);

ARRL:=Y[I]-A[l];

SH([S): =1,

'FOR’ I.=0 'STEP’ | "UNTIL' 3 'DO’
'BEGIN’

SH[I]: = FUN(T,26 + 1#8,33 +1*8);

SH[5]: = SH[5] — SH[I]

'END’;

'FOR’ I:=3 'STEP’ 1 "UNTIL' 7 DO’ A[l]: = SH{I-2]*A[2];
'COMMENT" FERTILIZERS AND PESTICIDES FOR SOWING AREAS;
NPK = FUN(T,58,69);

A[37]:=NPK/Y[1];



63
64
65
65
66
67
69
70
71
72
73
75
76
77
78
79
80
80
80
-— - — 80
80
82
83

83"

85
85
86
86
86
87
88
89

90
91
92
92
92
92

95
96
96
97
98
99
100
101
101
101
102
103
104
105
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PEST: = FUN(T,70,81);
A[38]: = PEST/Y[1};

HE: = P[510J*A[ ]+ P{STIJ*A[3] + P[512]*A[4] +

P[SI3]*A[S] + P[5 14]*A[6] + P{SIST*A[T);

HE: = NPK/HE;

"FOR’ 1=1 *STEP’ 1 "UNTIL' 6 ‘DO’ NPKF[1]: = HE*P[S09 + [};

NPKPL: = (NPK — NPKF[1J*A[1])/A{2);

A[24] = FUN(NPKPL,474,481);

HE: = P[S18)*A[3] + P[S19)*A[4] + P[5201*A[6] + P[S21T*A[6] + P[S22]*A[7];
HE: = PEST/HE;

'FOR’ I: =1 'STEP’ | "UNTIL" 5 'DO" PESTF[I}: = HE*P[517 +1];

CAO: = FUN(T,82,93);

CAOL:=CAO*A[1J(A[1]+ A[2]*P[516]);

CAO2:=CAO—CAOI:

CAOAl:=CAOU/A[1];

A[30]: = CAOZ/A[2];

‘COMMENT' RANDOM FACTORS GENERATION;

'IF T'GE'P[16] "THEN®

BEGINN - -
P[16}: =P[16]+ 1;

'FOR’ I:=1 "STEP’ | 'UNTIL’ 6 'DO’

*BEGIN®

GEN(X); P[709]: = FUN(X,626+ I*12,637 +1*12)

"END’

'END";

'COMMENT’ YIELDS OF GRASS,GRAIN,POTATOES,SUGAR-BEETS AND OTHER;
A[‘%l] =P[I1*FUN(NPKF[1).94,105)* FUN(CAOA1,106,1 17)*P[710];

A[32): = Y[2P*FUN(NPKF[2],118, 129)* FUN(PESTF[1],130,141)*P{711};
A[33]: = Y{[2]*P{5061*FUN(NPKF[3],142,153)*FUN(PESTF([2],154,165)*P{712];
A[34]: = Y[2]*P[507]*FUN(NPKF[4],166,177)*FUN(PESTF[3],178, 18N *P[713};

A[35]: = Y[2}*P[508]*FUN(NPKF([5],190,201)*FUN(PESTF[4],202,213)*P[714];
A[36]): = Y[2}*P[S09)*FUN(NPKF[6],214,225)*FUN(PESTF([5],226,237)*P[715};

‘COMMENT’ PLANTS PRODUCTION,TOTAL PLANT PRODUCTION,DIRECT CONSUMPTION,
PLANTS PROD. FOR FODDER; C
FOR’ ;=0 'STEP’ | "UNTIL’ 4 'DO" A[8+ 1]: = A[32+ 1]*A[3 +4];

A[13): = Al31J*A{1];
A4} = A[8] + A[91*P[2461 + AL10]*P[247] + A[ 1 1]*P[248] + A[12]*P[249] +
A[131*P[250];

POP: = FUN(T.238.245);

DIR: = A[14]*FUN(A[14)/POP.482,489);

A[15]: = DIR/POP;

A[16]): = A[14] — DIR + STRAW*P|523]*P[2];

'COMMENT"' PRODUCTION OF STABLE MANURE;

MAFOD: = A[26)*P{473];

MASTRAW: =STRAW*(1 — P[523])*P[565];

MAPR: ='IF° MAFOD)MASTRAW "THEN' MASTRAW 'ELSE’ MAFOD;
MAUS: =MAPR*P[524],

A[23}:=MAUS/A[2};

The model presented in this paper demonstrates another possible way of incorporating

random processes into a model. It is assumed, for example, that yields per hectare depend
upon random factors. The values of the random factors arc drawn once per year at the
beginning of the year; the time of the drawing is determined by parameter P{16}. (State-
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ments 80-85 indicate one possible system of notations for the random factors.)

First, the random numbers of the uniform distribution of (0,1) are generated (state-
ment 83). Next, the values of the random factors for all plants are determined (based on
the numbers generated in step 1 and on the inverse function of distribution). These inverse
functions are presented as piecewise linear functions (shown in Figure 5d). The values
of the random factors are stored in the auxiliary parameters P{710} to P{715}.

The next step is to determine which functions are interaction functions (that is, which
functions influence rates of change for the state variables). They are plotted as piecewise
linear functions. Their values are then summed, yielding the overall effect of the change.
As Appendix 1 demonstrates, this additive mode does not diminish the gencrality of the
approach.

The influence of four specific types of interaction functions requires special elabo-
ration:

1. The influence of the quantitative variable Y1 on the rate of change of the quan-
titative or qualitative state variable Y2. The interactive function is established
by repcatedly asking a question such as: “If at any time, the valuec of Y1 = yl
and the influences of the other variables are equal to zero, what would be the
rate of change of y2?7”

2. The influence of either a recurring or nonrecurring event on the rate of change of
the quantitative or qualitative state variable. The influence of the event is visible
only after its occurrence. This type of function shows the state variable’s rate of
change (assuming the influence of other variables is equal to zero) at time after oc-

currence = . An example of this type of function is shown in Figure 4c.

In both types 1 and 2, the influence may not rest squarely on the rate of change, but
rather on the relative rate of change (see Figures 4b and 4d).

3. The influence of the quantitative or qualitative variable, Y1, on the probability
of the event’s occurrence. This type of function demonstrates the dependency

100, ¢ °
100 de ; " Y2 0'11'—.—3‘
dt ~'2 Yg
0 0 t 0 Y1
8 5‘0 ' o 5 10 58 1
(a) (c) (e)
LJ
0,1 _¢& Y \'(
’ ..Ig 0,1 ~W2 0'1 -..1
Y2 2 Y3
Y1
) 0 t o t
0 50 o 5 0 2 kK
(b) () (£)

Fig. 4. Interaction functions.
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of the relative rate of change in probability on the values of the influencing
variables (when the influence of other variables is equal to zero). (See Figuré
4e.)

The influence of the event on the probability of occurrence of another event. This
type of function shows how the relative rate of probability change depends on
the time after the moment of occurrence of the influencing event. (Sce Figure

4£.)

The piecewise lincar functions used in the equations for auxiliary variables and interactive
functions in our examples are shown in Figure 5.

7 AL = FIN (T, 18, 25) 7 [10%kq]
4 [10°na]
,0 NPK = FUN ({T,58,63)
- 4,0
3,94 CAO = FUN (T,82,93)
T . T
3,0
T T — ’ T T 1
1980 1990
LS ] (a) 1980 ) 1990
! {10 kg] 19 Values of
distributions
0il plants
Potatoes
7 PEST = FUN (T,70,81) 7
. Grain
1,04 i
T 0 /. Values of
T T T T T 0 T T T 7 random factors
1980 1990
3+ (c) 3 (@)
FUN (NPKF1,94,105) FUN (CAOAlL,106,117)
- (kg/na] . [kg/ma]
NPKF1 chonl
1 1
0 100 2bo 300 0 100 200 300
_ (e) (f)
- FUN (NPKFF2,118,129) =
> FuN (NPKF3, 142,153 y
! ! FUN (PESTF1,130,141)
] Uk FUN (PESTF2,154,165)
A YUN (NPKFA, 166,177) FUN (PESTF3,178,189)
NPK [kg/ha] PEST [kg/ha]
0 T T 1 0 T T 1
0 100 200 300 0 1 2 3
(g) (h)
Fig. 5. Functions in the model: (a) grassiand; (b) NPK and calcium fertilizers; (c) pesticides; (d)

distribution of random factors in yicld function; (e)-(h) fertilizer and pesticide functions; (i) direct

consump

tion of plant production; (j) plants not using NPK fertilizers; (k)=(p) interaction functions,
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Lagun (A14/POP,482,489)
2007 A24 = FUN (NPKPL,474,481)
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Fig. 5. (Continued)

After the functional forms of auxiliary variables are written into thc computer, the
true conversation with MISS-E begins. During this conversation, all information estab-
lished in the previous steps is written directly on the terminal or is drawn from the
indicated files. At any stage of the simulation it is possible to change the model’s structure.,
New interactions may be added, for example, or an existing interaction function may be
withdrawn. The shape of the existing interaction functions, the values of the state vari-
ables, the values of the delays, and the method and steps of integration also may be
changed. It is also possible to force the occurrence of some events at any stage, which
makes possible the gencration of scenarios.

As with DYNAMO, results may take the form of tabular and/or graphical output at



386 H. KWASNICKA AND W. KWASNICKI

any stage of simulation. The results of onc simulation experiment are shown in Figure
6.

Concluding Remarks

MISS-E has been appliced as a structural modeling tool in the building of both small
and large models, and the results arc promising. The approach secms to be convenient
for gencrating and scarching for crucial points in the development of systems scenarios.

The use of codes for the state variables and auxiliary variables and the definition of
the auxiliary variables in terms of an algorithmic language (FORTRAN or ALGOL)
allows MISS-E to be applicd to a wide range of systems. We recognize, however, that
therc arc instances where generality is not needed. In such instances, the definition of
the variables by code may cause crrors and confusion. Instecad, we suggest that the user
employ short, meaningful acronyms rather than codes, as in the QSIM2 approach.'

~ PNTATOS* PRODUCTION
/7 A9/ :

1.0804

R NPK: FERTILIZERS / ‘,'
| /ka/ha, A37/ . e®

JE S O e e LR

w

.00

1995.00

o

c

1790

Fro

Fig. 6. Graphical output of MISS-E.

"This improvement was the suggestion of Dr. Wayne Wakeland, Portland State University, Systems Science
Department. We are grateful for his helpful suggestions and comments.
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Future MISS-E development is projected to include the incorporation of a procedure
for selecting the most probable scenario(s), the optimization of a model’s parameters,
and a procedure for sensitive analysis.

Appendix 1: The Mathematical Foundation of MISS-E
Before developing MISS-E, the authors made the following assumptions:

1. The developed method must enable modeling of as wide a range of continuous
dynamic systems as possible;

2. The time necessary to implement the constructed model must be short;

3. The developed method must provide great flexibility in terms of changing the
model’s structure and parameters during the simulation.

The greatest concern was with the first assumption: the need to utilize a general
mathematical model which could be uscd to represent a large class of systems. The model
selected is a set of first order ordinary differential equations of the type:

dYi:

o RY,LY,. . .Y,
dr

where i = 1,2, . ...

In order to satisfy the above assumptions, some restrictions have been placed on the form
of Fi(Y); however, the restrictions do not in any way limit the generality of MISS-E. Using
adequately defined auxiliary variables, it is possible to model nearly cvery kind of ordinary
differential equation.

For quantitative state variables,

dYi . . -2
7 = 2 F(Y) + 3 GuA) + 3 En,

J=i k=1 =1
where Fj;, Gy, and E;,, respectively, are the interaction functions of Y;, A, and cvent 1
dY:
on ——.
dt
For qualitative state variables,

k

dY n P

EFZ = | 3 FY) + 3 GulA) + 2 Ey | X B x (100 = Y) X Y.
=1 k=1 1=1

For events:

dpi(r) < « 2 . .

ITT = [ 3 F(Y) + 3 Guw(A) + SEq| x C x (1 ~ pi) x pi,

j=1 k=1 =1

where pi(t) = the probability of the event’s occurrence during the period (¢, ¢ + 1).
The arbitrarily chosen mathematical forms of the normative function in equations
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for qualitative state variables (B{100 — Y,) ¥ Y,) and for events (C,(I — Pi) x Pi)
require special claboration. The choice of these forms has been imposed on the one hand
by the necessity of ensuring the variability of these variables within their range, and on
the other, to diminish the deformation of the experts’ answers (i.e., the sums of interaction
functions F;,, Cy, and E;).

Many possibilites exist in the cheice of functions. For example, Kane [4] has assumed
the normative function equal to —Y,; X In(Y;}. Our normative functions are very similar
to the functions in differential equations for the logistic (S-shaped) function which is
often used (o describe social and technical processes. (A more detailed discussion of
normative functions may be found in Kwasnicka and Kwasnicki [5]).

During the numerical integration, pscudo-random variables arc generated; and on
the basis of these variables, the occurrence or nonoccurrence of events is determined. In
MISS-E, the complex exponcential distribution of waiting time on the event’s occurrence
T has been assumed. Thus,

FATY = 1 — exp (- Ai(r) X T),

where h;(#) = the stochastic process. The values of \;(#) are reckoned on the basis of
the probability of the event's occurrence during the period (1, ¢ + 1).
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